WNE Linear Algebra
 Final Exam

 Series B

 Series B}

29 January 2024

Please use separate sheets for different problems. Please use single sheet for all questions. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks. Each question is worth 4 marks.

Problems

Problem 1.

Let $V=\operatorname{lin}((1,1,9,-1),(1,2,12,-2),(2,-1,9,1))$ be a subspace of \mathbb{R}^{4}.
a) find a basis of the subspace V and the dimension of V,
b) find a system of linear equations which set of solutions is equal to V.

Problem 2.

Let $V \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{l}
x_{1}+3 x_{2}+16 x_{3}+18 x_{4}=0 \\
x_{1}+2 x_{2}+11 x_{3}+12 x_{4}=0 \\
x_{1}+x_{2}+6 x_{3}+6 x_{4}=0
\end{array}\right.
$$

a) find a basis \mathcal{A} of the subspace V and the dimension of V,
b) for which $t \in \mathbb{R}$ vector $v=(1, t,-1,1)$ belongs to V ? For every such t find coordinates of v relative to basis \mathcal{A}.

Problem 3.

Let

$$
A_{1}=\left[\begin{array}{rrr}
3 & -1 & 1 \\
2 & 0 & 2 \\
0 & 0 & 2
\end{array}\right], \quad A_{2}=\left[\begin{array}{rrr}
2 & 2 & -7 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right], \quad A_{3}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

a) which of the matrices are diagonalizable?
b) for each diagonalizable matrix A_{i} find a matrix $C_{i} \in M(3 \times 3 ; \mathbb{R})$ such that

$$
C_{i}^{-1} A_{i} C_{i}=\left[\begin{array}{ccc}
a_{i} & 0 & 0 \\
0 & b_{i} & 0 \\
0 & 0 & c_{i}
\end{array}\right],
$$

where $a_{i} \leqslant b_{i} \leqslant c_{i}$.

Problem 4.

Let $\mathcal{A}=((0,0,1),(1,0,0),(0,1,0))$ be an ordered basis of \mathbb{R}^{3} and let $\mathcal{B}=((1,2),(1,1))$ be an ordered basis of \mathbb{R}^{2}. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be linear transformation given by the matrix

$$
M(\varphi)_{\mathcal{B}}^{\mathcal{A}}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
0 & 3
\end{array}\right]
$$

and let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation given by the formula

$$
\psi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{2}, x_{1}+2 x_{2}\right) .
$$

a) find the matrix $M(\psi)_{\mathcal{B}}^{\mathcal{B}}$,
b) find the formula of $\varphi \circ \psi$.

Problem 5.

Let

$$
V=\operatorname{lin}((1,1,0),(1,-1,2),(0,1,-1))
$$

be a subspace of \mathbb{R}^{3}.
a) find an orthonormal basis of V,
b) find the orthogonal projection of $w=(0,3,0)$ onto V^{\perp}.

Problem 6.

Consider the following linear programming problem $-2 x_{2}-x_{5} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{array}{l}
x_{1}+x_{2}-x_{3} \\
x_{1} \\
-2 x_{3}-3 x_{4}-x_{5}=18
\end{array} \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{1,3\}, \mathcal{B}_{2}=\{2,5\}, \mathcal{B}_{3}=\{4,5\}$ is basic feasible? Write the corresponding basic solution for all basic sets,
b) solve the linear programming problem using simplex method. Start from the basic feasible set taken from part a).

Questions

Question 1.

Let $V \subset \mathbb{R}^{6}$ be a subspace given by

$$
V=\left\{\left(x_{1}, \ldots, x_{6}\right) \in \mathbb{R}^{6} \mid x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0\right\}
$$

Let $P=M\left(P_{V}\right)_{s t}^{s t}$ be the matrix of the orthogonal projection onto V. Let $v=(1,-2,3,-5,4,-1) \in \mathbb{R}^{6}$. Does it follow that $P^{101} v=v$?

Solution 1.

Yes, it does. Since $v \in V$, we have $P_{V}(v)=v$ and therefore

$$
P^{101} v=P v=v
$$

Question 2.

Let $M \in M(2 \times 2 ; \mathbb{R})$ be a matrix. Assume that $v^{\top} M v=0$ for any $v \in \mathbb{R}^{2}$. Does it follow that $M=0$?

Solution 2.

No, it does not. For example

$$
M=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \neq 0, \quad \text { but } \quad v^{\top} M v=0
$$

Question 3.

Let $A \in M(2 \times 2 ; \mathbb{R})$ be a matrix such that $\operatorname{det} A \neq 0$. Does it follow that

$$
\operatorname{det}\left[\begin{array}{rr}
0 & -A \\
A & 0
\end{array}\right]>0 ?
$$

Hint: in the above matrix 0 denotes the 2 -by- 2 zero matrix.
Yes, it does.

$$
\operatorname{det}\left[\begin{array}{rr}
0 & -A \\
A & 0
\end{array}\right] \stackrel{\substack{r_{1} \leftrightarrow r_{3} \\
r_{2} \stackrel{\leftrightarrow}{r}}}{=}(-1)^{2} \operatorname{det}\left[\begin{array}{rr}
A & 0 \\
0 & -A
\end{array}\right]=(\operatorname{det} A)(\operatorname{det}(-A))=(\operatorname{det} A)(-1)^{2}(\operatorname{det} A)=(\operatorname{det} A)^{2}>0
$$

Question 4.
Let $A, B \in M(2 \times 2 ; \mathbb{R})$. Assume that $\operatorname{det}(A-\lambda B)=0$ has two different solutions $\lambda_{1}, \lambda_{2} \in \mathbb{R}, \lambda_{1} \neq \lambda_{2}$ and matrix B is invertible. Does it follow that $\operatorname{det} A=\lambda_{1} \lambda_{2} \operatorname{det} B$?

Solution 3.

Yes, it does.

$$
\begin{gathered}
\operatorname{det}(A-\lambda B)=\operatorname{det}\left(\left(A B^{-1}-\lambda I\right) B\right)=\left(\operatorname{det}\left(A B^{-1}-\lambda I\right)\right)(\operatorname{det} B)=0 \\
\Uparrow \\
\operatorname{det}\left(A B^{-1}-\lambda I\right)=0
\end{gathered}
$$

Therefore 2-by-2 matrix $A B^{-1}$ has two different eigenvalues λ_{1}, λ_{2}. In particular, determinant of a diagonalizable matrix $A B^{-1}$ is equal to the product of its eigenvalues.

Question 5.

Let $L \subset \mathbb{R}^{2}$ be an affine line. Assume that $\sigma_{L}((1,2))=(3,4)$, where σ_{L} denotes the affine orthogonal reflection/symmetry about L. Does it follow that

$$
L=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}-x_{2}=-1\right\} ?
$$

Solution 4.

No, it does not. Let $p=(1,2), q=(3,4)$. It follows that $\frac{1}{2} p+\frac{1}{2} q=(2,3) \in L$ and $\overrightarrow{p q}=(3,4)-(1,2)=(2,2) \in \vec{L}^{\perp}$. Therefore

$$
L=(2,3)+\operatorname{lin}((1,-1)) \neq\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}-x_{2}=-1\right\}=(2,3)+\operatorname{lin}((1,1)) .
$$

